
Mercury: Bringing efficiency to key-value stores

Rohan Gandhi
Purdue University

gandhir@purdue.edu

Aayush Gupta
IBM Research - Almaden
guptaaa@us.ibm.com

Anna Povzner
IBM Research - Almaden

apovzne@us.ibm.com

Wendy Belluomini
IBM Research - Almaden

wb1@us.ibm.com

Tim Kaldewey
IBM Research - Almaden
tkaldew@us.ibm.com

ABSTRACT
While the initial wave of in-memory key-value stores has been op-
timized for serving relatively fixed content to a very large num-
ber of users, an emerging class of enterprise-scale data analytics
workloads focuses on capturing, analyzing, and reacting to data
in real-time. At the same time, advances in network technolo-
gies are shifting the performance bottleneck from the network to
the memory subsystem. To address these new trends, we present
a bottom-up approach to building a high performance in-memory
key-value store, Mercury, for both traditional, read-intensive as
well as emerging workloads with high write-to-read ratio. Mer-
cury’s architecture is based on two key design principles: (i) econ-
omizing the number of DRAM accesses per operation, and (ii)
reducing synchronization overheads. We implement these princi-
ples with a simple hash table with linked-list based chaining, and
provide high concurrency with a fine-grained, cache-friendly lock-
ing scheme. On a commodity single-socket server with 12 cores,
Mercury scales with number of cores and executes 14 times more
queries/second than a popular hash-based key-value system, Mem-
cached, for both read and write-heavy workloads.

Categories and Subject Descriptors
H.2.4 [Systems]: [Concurrency]

General Terms
Design, Performance

Keywords
key-value, cache, concurrency

1. INTRODUCTION
Extreme latency and throughput requirements have driven many

large-scale application providers to store all active data in DRAM
using in-memory key-value storage. In-memory, key-value (KV)
stores and caches are a critical building block in many of today’s
large-scale web installations [3]. Memcached [5] is one of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SYSTOR ’13, June 30 - July 02 2013, Haifa, Israel
Copyright 2013 ACM 978-1-4503-2116-7/13/06 ...$15.00.

Single-threaded latency Multi-threaded latency
(12 threads)

Figure 1: Latency breakdown of a Memcached GET.

most prominent examples with an impressive list of users which
includes Facebook, Wikipedia, Twitter, and Youtube. As they gain
widespread adoption, these stores will also become essential for
real-time business analytics and decision support where high through-
put and low latency are critical [21].

Even though DRAM has high capital and operating costs, the
effectiveness of in-memory key-value stores in utilizing available
DRAM bandwidth has received little attention. The main focus has
been on scaling-out through techniques such as sharding [5, 10],
since per-node performance has been limited by comparably slow
networks. However, recent advances in network technologies such
as 10Gb/100Gb Ethernet, 40Gb Infiniband [7, 8], and RDMA now
provide bandwidth matching DRAM and about one order of mag-
nitude higher latency, shifting the bottleneck from the network to
the memory subsystem [3, 6, 17]. Thus, it is critical to focus on
micro-level aspects such as memory bandwidth utilization while
employing macro-level scale-out methods for building high perfor-
mance key-value stores.

Recently, Fan et al. proposed MemC3 [14], a re-design of Mem-
cached internals to improve the memory bandwidth utilization. How-
ever, their design is suited for read-heavy workloads and it ad-
versely impacts write performance by not being able to support
concurrent writes. While this may be admissible for read-intensive
workloads, such as those reported by Facebook [11], many emerg-
ing workloads exhibit much higher write-to-read ratio. Applica-
tions in many commercial spaces, such as real-time fraud detection,
require a dataset to be continually updated with new information.
This emerging class of use cases is focused on capturing, analyzing,
and reacting to data in real-time. In order to understand this space
further, we analyzed a commercial enterprise analytics workload
that processes personal identifying information, such as name, ad-
dress, and social-security number, in real-time. Every access to this
database results in at least one and possibly many writes, since it
functions by continually adding new observations to the database
and checking for anomalies (e.g., people with different names us-
ing the same social security number). Each time a new observation
is made, writes are required. Although the exact read/write ratio is

dataset dependent, our trace analysis of a sample dataset showed a
1:1 read/write ratio.

Another trend is that application workloads are shifting towards
smaller key and value sizes. Memcached pools sampled in [11],
e.g., user accounts, have 2B values and 16B or 21B keys. In our
enterprise analytics workload, we observe that 78% of values are
smaller than 8B and keys range from 9B to 57B. Thus, key-value
access overhead is no longer masked by large values, which previ-
ously allowed relatively high memory bandwidth even with ineffi-
cient lookup strategies [21]. Small objects also increase the number
of key-value pairs that can fit in the memory of a single server, ren-
dering optimizations for the memory hierarchy, such as storing the
hash table in CPU caches [19], ineffective.

Hence, we require a key-value store which takes into consid-
eration these emerging workload characteristics and is able to ef-
ficiently utilize the available memory bandwidth. In this paper,
we present a bottom-up approach to designing such a high perfor-
mance in-memory key-value store, Mercury, suitable for both read-
dominant and write-heavy workloads. We investigate the factors
which impact the performance of a typical key-value store. Fig-
ure 1 demonstrates that DRAM accesses account for 44% of over-
all time spent servicing a GET request in a single-threaded instance
of Memcached. Furthermore, as concurrency is increased, syn-
chronization overheads dominate accounting for 63% of the over-
all latency. Based on these observations, we design Mercury to
efficiently utilize the available resources, thereby, economizing 1

DRAM accesses per key-value operation and increasing concur-
rency by reducing synchronization overheads.

This paper makes the following contributions: (1) It demon-
strates that a simple chaining-based hash table along with careful
design of data structures (such as cache-conscious lock placement)
can reduce DRAM accesses as compared to existing state-of-the-art
techniques [17, 14]. Our evaluation indicates that Mercury incurs
31-46% fewer memory accesses than Memcached for read-only
workloads. (2) It shows that a fine-grained, lightweight locking
scheme enables Mercury to scale with increasing number of cores
for both read-dominant and write-heavy workloads. Experiments
with YCSB benchmark [13] reveal about 9.2x to 14x increase in
throughput with our system as compared to Memcached for work-
loads with different read/write ratios.

2. DESIGN SPACE
In this section, we systematically evaluate the existing algorithms

and data structures for building key-value stores and choose the ap-
proaches which meet our design principles.

2.1 Data Layout Methods
The techniques to leverage the CPU memory hierarchy [17, 19]

are rendered ineffective for most large scale key-value workloads.
These workloads not only have large working sets, both in terms of
data volume and number of key-value pairs, but also demonstrate
lack of locality and random access patterns [11]. Hence, attempts
such as increasing cache hits by using a constant-size hash table
that can fit into the CPU cache [19] may not be beneficial. For ex-
ample, a 4GB key-value workload on a server with 12MB L3 cache
will demonstrate a 99.7% probability of a cache miss for a random
read request. Furthermore, it will require 2048 page-table entries
when 2MB pages are used. In many modern architectures, the TLB
size is not more than 128 entries, resulting in 0.94% probability
of a TLB hit. Instead, decreasing the number of DRAM accesses

1We use the term economizing to imply as low as possible without
the implication of a mathematical minimization function.

per-operation allows us to reduce latency and improve throughput.
Adhering to our bottom-up approach, we consider two well ac-

cepted data layout methods: trees and hash tables, and analyze
their memory bandwidth utilization. We define memory band-
width utilization as the ratio of the amount of data requested by
the application to the actual amount of data accessed at the memory
controller. The ratio can be <1 as the memory cannot be accessed
in units smaller than a CPU cache line. Given a value size V and
a cache line size C, the maximum memory bandwidth utilization
is V

C∗�V/C� . For a 8B value, given a typical 64B cache line, the

theoretical limit on the memory bandwidth utilization is 12.5%.
Tree-based layout. In tree-based key-value stores, the key and

value pairs are stored in a tree. For analysis, we use the current
state-of-the-art tree implementation from MassTree [17]. MassTree
combines B+ trees and tries, where every trie node is a B+ tree.
Each internal node in the B+ tree stores constant sized key slices.
The values (or the next layer pointers) are stored at the leaf nodes
of each B+ tree.

The potential number of DRAM accesses per operation is equal
to the height h of the tree, as every lookup starts from the root. In
the best-case (a balanced tree), h = logf (N), where f is the fan-
out and N is the number of key-value pairs stored. For N=100M
and f=15, h = �logf (N)� = 7. An additional memory access
is required to retrieve the value. On average, MassTree can cache
up to 4 levels of the tree in a trie2, and retrieve 4 cache lines in
one DRAM access. Thus, MassTree will make at least 4 DRAM
accesses per operation: 3 accesses (each 256B) to retrieve the key
and one access for the value. The total amount of memory accessed
to retrieve an 8B value is 3 · 256 + 64 = 832 bytes, translating to
only 0.96% the bandwidth utilization.

Hash-based layout. In a hash table implementation where the
key-value pairs are stored separate from the table, the minimum
number of DRAM accesses per lookup is 2: one to access the hash
table and one to access the key-value pair. DRAM accesses can
be saved by storing key-value pairs within the hash table. How-
ever, this implies that the hash table width needs to be as large as
the largest key-value pair size. This can result in severe memory
wastage, especially when most of the value sizes are small while
only a few values are large. The scalable approach, therefore, is to
store key-value pairs separate from the hash-table.

Memcached [5] and many key-value stores based on it [10, 19]
use chained hashing. A key-value pair is retrieved by first hashing
the key to locate the correct hash table bucket, and then retrieving
the data by traversing the key-value pair list. Thus, the number of
DRAM accesses is D = 2 + X , where X is additional key-value
pairs traversed due to collision.

Another approach to hash table implementation is open address-
ing which stores a single key-value pair per bucket. Collisions are
resolved through approaches such as linear probing and quadratic
probing [15]. MemC3 [14] uses set associative cuckoo hashing [16],
a form of open-addressing. It can achieve 3.03 or 4.03 DRAM ac-
cesses per GET operation: 2.03 to 3.03 DRAM accesses to retrieve
the key and one DRAM access for the value [14]. However, it op-
timizes reads at the cost of writes. Adding a new key-value pair
in MemC3 can displace multiple existing key-value pairs in the
hash-table, causing multiple DRAM accesses. Moreover, cuckoo
hashing locks the entire hash table while expanding, causing de-
graded performance during expansion [2] which can be critical for
write-heavy workloads.

2Consider that 1MB of L3 cache, caches the interior nodes. As the
interior node size is 277B in MassTree, 3785 nodes can be stored
in the L3 cache, which corresponds to 4 levels at f=15 and N=100
million.

Design Choice: Based on the above analysis, MERCURY uses
chained hashing with an aggressive hash table expansion mecha-
nism to ensure that chain lengths remains short (near 1), thus keep-
ing the number of DRAM accesses close to 2 for both reads and
writes. For small key-value pairs this often translates to two cache
line accesses. Thus, for an 8B value, the practical limit on the
memory bandwidth utilization, given a typical 64B cache line is

8
2·64 = 6.25% (recall that theoretical limit is 12.5% in this case),
which is about 6.5 times as can be achieved by a tree-based method.

2.2 Concurrency
High concurrency enables better memory bandwidth utilization

on multi-core hardware and requires reducing synchronization over-
heads. Existing concurrent hashmap approaches [20, 1] use a fixed
collection of locks, where each lock protects a set of buckets, en-
abling concurrent writes. However, for large datasets, this coarse-
grained locking approach can result in contention among threads
performing concurrent writes on different buckets protected by the
same lock. Furthermore, these write operations require access to a
shared array of locks, incurring cache invalidations on multi-core
hardware [12]. This significantly reduces multi-threaded through-
put for write-heavy workloads. Hash table wide operations such
as hash table expansion require exclusive access to all the locks,
further degrading performance.

Another set of approaches supports highly concurrent accesses
for read-intensive workloads. MemC3 uses cuckoo-hashing com-
bined with optimistic locking to scale read throughput. However,
it only supports a single writer at a time impacting write concur-
rency. Java’s ConcurrentHashMap allows retrieval operations to
proceed without acquiring a lock and synchronizes on detecting
stale data [4]. For workloads with high write-to-read ratio, this
optimistic approach can increase access overheads. Furthermore,
removal of an item requires cloning all or part of the bucket storing
the item, thus reducing concurrency. Lock-free expandable hash ta-
bles [22, 23] have been proposed but are either not space-efficient
or their performance depends on cache locality, thus impacting
their general applicability.

Many key-value systems reduce synchronization overheads by
using static partitioning of data between multiple isolated instances
running on the same machine. However, this can cause load im-
balance in the presence of skewed access patterns exhibited by
real-world workloads [14, 17]. The goal of this paper is to re-
duce per-instance synchronization overheads, but Mercury’s per-
formance may be further improved with partitioning techniques in
the future.

Design Choice: Mercury uses fine-grained locking - lock per
bucket - along with aggressive hash table expansion to reduce chain-
ing. A cache-conscious placement of these locks enables us to re-
duce cache invalidations, achieving high concurrency and scaling
with the number of cores.

3. MERCURY DESIGN
At Mercury’s core is a chained hash table [18], as shown in fig-

ure 2(a). Each entry in the hash-table contains a pointer to the list of
key-value pairs that hash to the same bucket. The key-value struc-
ture is illustrated in figure 2(b). We utilize two techniques to econ-
omize DRAM accesses per-operation: cache-conscious placement
of locks and aggressive hash table expansion for keeping chain
lengths small. We also develop a simple mechanism for reducing
contention for the memory allocator/de-allocator.

Locks. To achieve high concurrency, Mercury implements fine-
grained locking, where each hash table bucket with its key-value
pair list is protected by its own lock. Thus, if there are N buckets

(a) Hash-table entry

(b) Hash-table entry (c) Key-value pair entry

Figure 2: MERCURY’s data structures.

in the hash table, there are N locks. Once a thread acquires a lock,
it has access to all the key-value pairs within that bucket.

Accessing a lock may incur additional cache misses [12] because
locks are stored in DRAM and are shared by multiple threads. We
eliminates these penalties by using cache-conscious placement of
locks: A lock protecting a given hash table bucket (bucket-lock),
is co-located with the hash table entry (Figure 2(b)). This ensures
that accessing a hash table entry results in no more than one cache
miss, because fetching the entry also brings in the lock.

Hash table expansion. Mercury provides aggressive hash table
expansion that aims to keep the average number of key-value pairs
per bucket near 1. This helps achieve close to minimum number
of DRAM accesses per-operation. To reduce expansion’s negative
impact on performance, we re-hash existing keys one bucket at a
time. Expansion is carried out in three phases. During the initial-
ization phase, the hash table state is changed from non-expanding
to expanding, and a new hash table is initialized. The actual re-
hashing phase re-hashes all the keys from the existing hash table
to the new one. A dedicated thread, called expand-thread, acquires
a single bucket lock, re-hashes all the keys in that bucket into the
new hash table, and then releases the lock. While the expand-thread
is re-hashing an existing key, other threads can freely access other
buckets and perform operations on key-value pairs. Because of ag-
gressive expansion, chain lengths are small. Thus, the time for re-
hashing keys from each bucket is low. This allows the bucket to be
available quickly for servicing requests. Finally, the termination
phase resets the hash-table state to non-expanding and the memory
for the old hash table is freed.

Unlike traditional expansion techniques which require exclusive
access during the entire re-hashing process, MERCURY requires
global synchronization only during initialization and termination
phases because of its fine-grained locking mechanism. This exclu-
sive access is needed to prevent a possible race condition, when the
incorrect hash table is accessed by threads performing key-value
operations (worker-threads) during the change in the hash table
state. We address this problem by providing each worker-thread
with its own thread-lock which it shares with the expand-thread.
This lock is acquired by each worker-thread before performing any
operation and by the expand-thread during its state change opera-
tion. The synchronization overhead is extremely small since these
locks are only contended during hash table state change which re-
quires less than 1μsec according to our measurements. Further-

more, since every worker-thread has its own thread-lock, there is
no contention during non-expansion phase.

During re-hashing phase, worker-threads need to decide which
hash table to access during a lookup - the existing or the hash
table being created. We address this problem by keeping track
of the number of buckets re-hashed by the expand-thread. Sup-
pose, the existing hash table has N buckets (2 ∗ N buckets in
the new hash table). The expand-thread has re-hashed r buckets
(−1 ≤ r < N) and is currently re-hashing the keys in the (r+1)th

bucket. A worker-thread performing a key-value operation deter-
mines the appropriate bucket for the given key in the existing hash
table. Suppose the key hashes to bucket l in the existing hash-table:
l = hash(key)%N , where 0 ≤ l < N . There are two invariants.
(i) (l < r): The expand-thread has already re-hashed the key, so the
lookup will use the new hash table. The index in the new hash table
will be l′ = hash(key)%(2N). (ii) (l ≥ r): The expand-thread
is yet to re-hash the given key, so the lookup will use the existing
hash table.

A race condition can happen if the key hashes to a bucket which
is currently being re-hashed by expand-thread. In this scenario,
the worker-thread will wait on the bucket lock while the expand-
thread does its re-hashing. Once the bucket lock is released by
expand-thread, the worker-thread will acquire it even though the
key-value pairs have been migrated to the new hash table. We avoid
this situation by introducing a hasmoved bit in hash table entries (
Figure 2(b)). Whenever the expand-thread moves the key-value
pairs in a bucket, it marks the hasmoved bit. When the worker
thread acquires the bucket lock, it checks for the hasmoved bit. If it
is marked, the worker thread performs the lookup in the new hash
table. The co-location of the hasmoved bit with a hash table entry
enables zero cache miss penalty.

Memory Allocator: The memory management unit is respon-
sible for allocating the memory to new key-value pairs and de-
allocating the memory from the deleted key-value pairs. Mercury
employs pool-based memory allocation where every thread has its
own local pool of memory. Threads request memory from the man-
ager in large chunks (such as 2MB) and add it to their pool. Sub-
sequently, memory allocation/de-allocation requests are satisfied
from these local pools without contention for any locks. We plan to
explore more sophisticated memory allocator designs in our future
work.

4. EVALUATION
In this section, we evaluate the impact of our design choices

for Mercury and compare its performance to Memcached (v1.4.13)
which is a widely deployed open-source key-value cache. This pro-
vides fair comparison, because both systems use chained hashing,
while employing different locking and hash table expansion tech-
niques.

Setup. Our experiments run on a 12-core single socket 2.67GHz
(Intel Xeon X5650) server with 24GB DRAM running Linux 3.2.0.
Each core has 64KB L1 cache and 256KB L2 cache. All the cores
share 12MB L3 cache. The cache line size is 64B. We enable 2MB
hugepage support to reduce TLB misses. To exclude the network
overhead, we evaluate both systems without the networking com-
ponent.

4.1 Microbenchmarks
We use microbenchmarks to evaluate the memory bandwidth uti-

lization and throughput achieved by Mercury and compare it to
Memcached. The workload consists of 100% GET requests that
randomly access 32 million pre-loaded key-value pairs, consisting
of 8B keys and values each. We observe similar trends for work-

 0

 2

 4

 6

 8

1 2 4 6 8 12

L3
 to

ta
l c

ac
he

 m
is

se
s

(p
er

 r
eq

ue
st

)

Number of threads

Memcached
Mercury

Figure 3: L3 misses per GET request.

loads with larger values, but omit them due to space constraints.

 0

 10

 20

 30

 40

 50

1 2 4 6 8 12

Q
P

S
 (

x1
06)

Number of threads

Memcached (pthread)
Mercury (pthread)

Mercury (TAS)
Mercury (nolock)

Figure 4: GET throughput using different locking schemes in
MERCURY and Memcached.

Memory bandwidth utilization. We evaluate memory band-
width utilization of Mercury and Memcached by comparing cache
penalties. All the hardware measurements are performed using Per-
formance API (PAPI) [9].

Figure 3 shows the average number L3 misses (represents DRAM
accesses) incurred for each GET operation as we vary the num-
ber of threads. We observe that Mercury makes about 1.2 fewer
DRAM accesses on average for each GET request as compared to
Memcached for single-threaded instances. In fact, when we in-
crease concurrency to 8 threads, Memcached’s DRAM accesses
per request increase to 5.44 while number of DRAM accesses in
Mercury remains almost the same at 2.85. This can be attributed
to cache-conscious placement of locks and aggressive expansion
(during the initial key-value insertion phase) which keeps the chain
lengths small. Since our chain lengths are not always 1, our average
number of DRAM accesses per GET operation is greater than 2, re-
sulting in memory bandwidth utilization which is 2/2.85 = 70%
of the practical limit. On the other hand, memory bandwidth uti-
lization of Memcached is 2/5.44 = 36.7% at 8-threads.

Furthermore, we observe that L1 and L2 misses incurred by Mer-
cury are always less than Memcached by up to 34% and 53% re-
spectively (not shown due to space constraints). This is primarily

 0

 6

 12

 18

 24

 30

1 2 4 6 8 12

Q
P

S
 (

x1
06)

Number of Threads

Mercury
Memcached

(a) 100% GET

 0

 5

 10

 15

 20

1 2 4 6 8 12

Q
P

S
 (

x1
06)

Number of Threads

Mercury
Memcached

(b) 75% GET

 0

 3

 6

 9

 12

1 2 4 6 8 12

Q
P

S
 (

x1
06)

Number of Threads

Mercury
Memcached

(c) 50% GET

Figure 5: Throughput of YCSB workloads

due to per-bucket locks in Mercury which reduces the number of
cache invalidations in SMPs as compared to coarse-grained locks
in Memcached.

Throughput. Figure 4 shows the throughput in terms of queries
per second (QPS) achieved by different configurations of Mercury
and Memcached as the number of threads increases. Mercury (TAS)
represents our Mercury implementation. It uses test-and-set (TAS)
based locks. For categorizing the upper bound on Mercury’s per-
formance, we also present the results of Mercury where all locks
are removed, Mercury (nolock). While this configuration provides
the best performance, it does not ensure correctness. Memcached
(pthread) uses pthread-based locks, which is Memcached’s default
configuration. For fair comparison, we also provide the results
for Mercury using pthread locks, Mercury (pthread). Memcached
(TAS) is omitted because we do not observe benefits of TAS locks
in Memcached.

For a single-threaded instance, Mercury outperforms Memcached
by 16%, which also shows improvement in GET latency. As we
increase the number of threads, the gap in performance between
the two systems starts to widen. In fact, Memcached’s throughput
starts to degrade as concurrency is increased, whereas Mercury’s
performance scales with the number of threads. With 12 threads,
there is more than 15x gap in the performance of the two systems.
This illustrates the benefits of fine-grained locking over the fixed
number of locks used by Memcached. Furthermore, these tech-
niques allow us to achieve throughput close to the no-lock imple-
mentation. We plan to explore mechanisms to further reduce this
gap as part of our future work.

We also evaluate the impact of aggressive hash table expansion
on throughput. For 8 threads, the throughput of MERCURY during
expansion is only about 9% less than the throughput observed with-
out expansion (not shown due to space constraints). This shows
that expansion incurs a small overhead while providing significant
benefits by economizing DRAM accesses.

4.2 YCSB Benchmark
This section evaluates mixed GET/PUT performance using work-

loads generated with the Yahoo! Cloud Serving Benchmark (YCSB)
[13]. We vary the percentage of PUT requests to simulate emerging
workloads with varying write-to-read ratio. The key and the value
sizes are set to 24B and 10B respectively. In each experiment, the
key-value store is initialized with 24 million key-value pairs and
the benchmark is executed for 100 million requests generated us-
ing Zipfian popularity distribution. The number of columns was set
to one as Memcached and Mercury do not support columns.

Figure 5 shows that Mercury outperforms Memcached for all
workloads with different write-to-read ratio with throughput higher

by an order of magnitude ranging from 9.2x to 14x for 12 threads.
Even for workloads with 50% writes in them (Figure 5(c)), Mer-
cury’s performance scales up to number of physical cores (6) in the
system while Memcached fails to scale with increased concurrency.
This clearly demonstrates that careful design of data structures to
exploit available memory bandwidth can have a huge impact on the
performance and scalability of a key-value store.

5. FUTURE WORK
In this work, we outlined the core components of a key-value

store designed to make efficient use of underlying hardware. In
section 3, we described a simple mechanism to reduce contention
while allocating/de-allocating memory for key-value pairs. We
plan to extend this mechanism to build a scalable memory allocator
for Mercury. Another critical aspect of in-memory key-value stores
(beyond caches) is the need for data persistence. Thus, going for-
ward, we will look into different software techniques and devices
to enable a high performance and scalable backend for Mercury.
We will investigate the consistency-performance tradeoffs in such
an environment and study their impact on different enterprise-scale
workloads.

6. CONCLUSION
In this paper, we systematically explored the design choices for

building a highly efficient key-value store for both traditional read-
dominant and emerging write-intensive workloads. We observed
that a simple chained hashing with fine-grained, cache-friendly locks
and aggressive, but efficient re-hashing scheme is capable of re-
ducing DRAM accesses and improving throughput by about 14x as
compared to Memcached.

7. REFERENCES
[1] Class concurrenthashmap. http://gee.cs.oswego.

edu/dl/jsr166/dist/docs/java/util/
concurrent/ConcurrentHashMap.html.

[2] Cuckoo hashing expansion. http://users.cis.fiu.
edu/~weiss/dsaajava3/code.

[3] High performance at massive scale - Lessons learned at
Facebook. http://tinyurl.com/ygvkpet.

[4] Java theory and practice: Building a better hashmap.
http://www.ibm.com/developerworks/
library/j-jtp08223/.

[5] Memcached. http://memcached.org.

[6] Memcached multiget hole.
http://tinyurl.com/yz5wyvc.

[7] Network bandwidth growth.
http://tinyurl.com/9hx23su.

[8] Network bandwidth growth.
http://tinyurl.com/9n4g34u.

[9] "papi". http://icl.cs.utk.edu/papi/.

[10] Redis. redis.io.

[11] B. Atikoglu, Y. Xu, E. Frachtenberg, et al. Workload analysis
of a large-scale key-value store. SIGMETRICS ’12, pages
53–64, 2012.

[12] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,
M. F. Kaashoek, R. Morris, and N. Zeldovich. An analysis of
linux scalability to many cores. OSDI’10, pages 1–8, 2010.

[13] B. Cooper, A. Silberstein, E. Tam, et al. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 143–154, 2010.

[14] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and concurrent memcache with dumber caching
and smarter hashing. In Proc. 10th USENIX NSDI, Lombard,
IL, Apr. 2013.

[15] G. D. Knott. Expandable open addressing hash table storage
and retrieval. SIGFIDET ’71, pages 187–206, 1971.

[16] H. Lim, B. Fan, D. G. Andersen, et al. Silt: a
memory-efficient, high-performance key-value store. SOSP
’11, 2011.

[17] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast
multicore key-value storage. EuroSys ’12, pages 183–196,
2012.

[18] W. D. Maurer and T. G. Lewis. Hash table methods. ACM
Comput. Surv., pages 5–19, 1975.

[19] Z. Metreveli, N. Zeldovich, et al. Cphash: a cache-partitioned
hash table. PPoPP ’12, pages 319–320, 2012.

[20] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling
memcache at facebook. In Proc. 10th USENIX NSDI,
Lombard, IL, Apr. 2013.

[21] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, et al. The case for ramclouds:
scalable high-performance storage entirely in dram. ACM
SIGOPS Operating Systems Review, 43(4):92–105, 2010.

[22] O. Shalev and N. Shavit. Split-ordered lists: lock-free
extensible hash tables. PODC ’03, pages 102–111, 2003.

[23] D. Zhang and P.-A. Larson. Lhlf: lock-free linear hashing
(poster paper). PPoPP ’12, 2012.

