
Diverse Soft Real-Time Processing in an Integrated System

Caixue Lin, Tim Kaldewey, Anna Povzner, and Scott A. Brandt
Computer Science Department, University of California, Santa Cruz

{lcx,kalt,apovzner,scott}@cs.ucsc.edu

Abstract
The simple notion of soft real-time processing has frac-

tured into a spectrum of diverse soft real-time types with a
variety of different resource and time constraints. Sched-
ulers have been developed for each of these types, but these
are essentially point solutions in the space of soft real-time
and no single scheduler has previously been offered that can
simultaneously manage all types. More generally, no de-
tailed unified definition of soft real-time has been provided
that includes all types of soft real-time processing.
We present a complete real-time taxonomy covering the

spectrum of processes from best-effort to hard real-time.
The taxonomy divides processes into nine classes based
on their resource and timeliness requirements and includes
four soft real-time classes, each of which captures a group
of soft real-time applications with similar characteristics.
We exploit the different features of each of the soft real-
time classes to integrate all of them into a single scheduler
together with hard real-time and best-effort processes and
present results showing their performance.

1 Introduction

Modern embedded, special-purpose and general-purpose
computing systems are becoming increasingly complex and
powerful. At the same time, the traditional notions of best-
effort and real-time processing have fractured into a spec-
trum of processing classes with different time constraints
including critical hard real-time applications, non-critical
soft real-time applications and best-effort applications [5].
Within soft real-time, there is a large spectrum of appli-
cations with different types of softened time-constraints:
meeting a minimum number of deadlines, requiring average
resource utilization, adapting to available resources, etc.
Although it is recognized that a variety of different types

of soft real-time exist with markedly different characteris-
tics, no unified classification of all existing soft real-time
applications has previously been presented. Most existing
scheduling models [7, 3, 10, 12] therefore support only one
or two classes of soft real-time processes. The result is that

when faced with a new type of soft real-time constraint, a
system must under- or over-constrain its processing, result-
ing in either reduced performance of the application, or re-
duced system utilization.
Our goal is a complete integrated real-time system sup-

porting all types of real-time processing constraints. The
Rate-Based Earliest Deadline (RBED) scheduler [5] previ-
ously integrated hard real-time, (one type of) soft real-time,
and non-real-time processes. We now discuss the incorpora-
tion of the full range of soft real-time processes into RBED.
We first present a complete real-time taxonomy which di-
vides processes into nine different classes—including four
soft real-time classes—based on their resource and timeli-
ness requirements. The taxonomy fully characterizes the
different processing and timeliness needs of the different
types of real-time processes and allows us to support the dif-
ferent characteristics in a single system. Next, we discuss
the integration of each of the soft real-time classes defined
by the taxonomy into RBED and present experiments that
validate the integration. The result is a single system and
scheduler that natively support a complete range of real-
time and non real-time processes, including adaptive and
non-adaptive soft real-time, firm real-time, and rate-based
processes in addition to hard real-time and best-effort.

2 Related work

Many different soft real-time processing models have
been developed to support soft real-time scheduling in var-
ious environments [10, 2, 22, 12, 13, 15, 20, 9, 26, 3, 7].
In general, each of these models classifies all soft real-time
applications into a single class by considering them having
similar or same timeliness features. For example, (m,k)-
firm real-time [10] and weakly-hard real-time [2] assume all
applications have firm constraints which allow some num-
ber of deadline misses in every fixed-size window of job in-
stances; Reservation-based models [22, 12, 13, 15] assume
all applications require X units of processing over an in-
terval of Y , thus a share X/Y of the CPU; Adaptive soft
real-time models [20, 9, 26, 3] assume all applications have
the ability to adapt their qualities to the available resources.
Each of these soft real-time models captures one or at most

1

a few of the existing types of soft real-time applications,
and none supports all the soft real-time classes. Our work
differs in that we want to classify soft real-time applications
into a minimum number of soft real-time classes, each cap-
turing a group of soft real-time classes with similar features,
and then support all of these classes.
Furthermore, some of these processing models only sup-

port the scheduling of their defined classes of soft real-
time applications but not fully integrated scheduling of hard
real-time or non-real-time (best-effort) applications. For
instance, (m,k)-firm real-time [10] does not support hard
real-time applications because it cannot guarantee all dead-
lines in overloaded conditions. HLS [28] is a hierarchical
scheduler, which composes arbitrary hierarchies of existing
schedulers in order to execute mixed class workloads. We
want integrated scheduling of hard real-time and best-effort
applications and all classes of soft real-time applications us-
ing a single scheduler (without the added complexity of un-
derstanding interactions of multiple schedulers).

3 Real-time taxonomy

Soft real-time tasks are conventionally defined as tasks
with soft deadlines i.e., deadlines that can be missed without
compromising the integrity of the system [6]. While largely
correct, such definitions fail to fully capture the diversity of
the timeliness features found in various soft real-time sys-
tems and applications. For example, how many deadlines
may be missed and by how much? If a deadline is missed,
will the task continue to execute or abort? What if an ap-
plication changes its processing so that it no longer misses
deadlines, but provides lower quality output?

3.1 Soft real-time applications

There is a large variety of soft real-time applications.
Some commonly used soft real-time applications and their
timeliness features include:

• Desktop and streaming audio [23]: No fixed deadlines,
but require continuous processing at a fixed (average)
rate.

• Desktop and streaming video (such as MPEG, RM,
etc.): may adapt to the available resources and/or drop
late frames [3].

• Virtual reality games [27] and interactive graphics:
usually adapt to available resources and vary frame
rate.

• Automatic control and monitoring systems [2]: fixed
deadlines, but oversampling techniques allow occa-
sional deadline misses.

• Adaptive control systems [21]: can adapt to available
resources by executing with different sampling peri-
ods.

• Other examples: Simulations of physical sys-
tems/flight simulators, speech and image processing,
soft modems, ...

Treating all of these different types of applications the
same may fail to fully utilize the system resources or pro-
vide the best performance possible. Audio playback ap-
plications, for example, may be run as hard real-time pro-
cesses, but doing so fails to take advantage of flexibility due
to their ability to buffer decoded data during playback. Sim-
ilarly, interactive games may drop frames, but better perfor-
mance may be achievable by reducing color depth. Provid-
ing each application with exactly the resources and timeli-
ness requirements that it needs will ultimately provide both
better performance and greater flexiblity, but doing so re-
quires a uniform model characterizing the varying require-
ments of these very different types of applications. Our
real-time taxonomy does exactly this, unifying the differ-
ent types of soft real-time applications into a single model
based on their resource and timeliness needs.

3.2 The taxonomy
The Resource Allocation and Dispatching (RAD)

model [5], conceptually depicted in Figure 1(a), separates
the two aspects of resource management implicitly handled
by all schedulers. It represents the diverse timing needs
of various applications in terms of the degree of flexibility
required with respect to resource allocation, or how much
resources are required, and dispatching, or when the re-
sources are required. Hard real-time (HRT) processes, for
example, have extremely tight resource allocation and dis-
patching requirements: they must be guaranteed the re-
sources required to execute for their worst-case execution
time every period. Best-effort (BE) processes, by contrast,
have very loose resource allocation and dispatching require-
ments, generally being able to run as slow and sporadi-
cally as necessary without being thought of as having failed.
However, there is variation in terms of these requirements
even within best-effort scheduling: non-interactive CPU-
bound processes need greater amounts of CPU, but within
very broad parameters they can use it in any size increments
and at any time, while I/O-bound processes, especially in-
teractive ones, use relatively little CPU but need to receive it
quickly once they have unblocked in order to provide good
interactive responsiveness.
Between hard real-time and best-effort lies the broad

class of applications and systems referred to as soft real-
time (SRT). This includes a variety of different systems
with varying properties, all of which share the common
property that resource allocation and/or dispatching require-
ments are looser relative to hard real-time. Figure 1(a) di-
vides these into four broad sub-categories—Missed Dead-
line Soft Real-Time (MDSRT), Firm Real-Time (FRT), Re-
source Adaptive Soft Real-Time (RASRT) and Rate-Based

2

(a) RAD model and real-time classes (b) Real-time taxonomy
Figure 1. Real-time taxonomy

(RB)—depending upon which constraints are relaxed. MD-
SRT is real-time processing in which the time constraint is
entirely softened such that some or even all deadlines may
be missed by varying degrees [5, 16, 22, 23]. FRT is real-
time processing in which the time constraint is relatively
softened (compared to hard real-time processing) such that
a specified number of deadlines may be missed in a given
window of job instances [10, 2]; jobs whose deadline has
been missed are considered invalid and are dropped. By
contrast, RASRT is real-time processing in which the re-
source allocation constraint is softened by adapting appli-
cation processing requirements to the available resources
while attempting to minimize the number and amount by
which deadlines are missed [3, 4, 16, 29]. Finally, in Rate-
Based processing both resource allocation and dispatching
can vary, but not completely independently: if more re-
sources are provided a longer time may elapse before re-
sources are once again allocated, and vice versa [25, 12].
The conceptual diagram of Figure 1(a) is formalized in

Figure 1(b). The X-axis defines three degrees of dispatch-
ing constraints (from softest to hardest): 1) a task may be
given the resources it requires at any time i.e., all jobs may
miss their deadlines, 2) a minimum percentage of the jobs
of a task must meet their deadlines1; and 3) all jobs of a
task must meet their deadlines. The Y -axis similarly de-
fines three degrees of resource allocation constraints (from
softest to hardest): 1) a task may receive any resource rate
up to and including its target resource rate i.e., it has no
minimum resource rate, i.e., Us ∈ (0,Ut]; 2) a task may re-
ceive any resource rate between its minimumUmin (Um for
short) and its target resource rateUt , i.e., Us ∈ [Um,Ut]; and
3) a task must receive a resource rate Us equal to its target

1We do not distinguish the case where all deadlines may be missed
by a fixed maximum amount, as this is equivalent to meeting 100% of
appropriately determined pseudo-deadlines.

(worst-case) resource rateUtarget (Ut for short), i.e.,Us =Ut .
This yields nine different classes of resource and time-

liness requirements: 1) True best-effort with no processing
or timeliness requirements; 2) CPU-bound best-effort, with
some processing requirements; 3) I/O-bound best effort,
with some timeliness requirements; 4) Missed-Deadline
Soft Real-Time, with fixed soft deadlines; 5) Firm Real-
Time, with some combination of soft and hard deadlines;
6) Resource-Adaptive Soft Real-Time, with the ability to
adapt to any degree of resource availability; 7) Resource
Adaptive Soft Real-Time, with a minimum amount of re-
sources required; 8) Rate-based, with a required average re-
source rate, but flexibility both in the timing and amount of
resources required at any given time2; and 9) Hard Real-
Time.
The previous version of RBED supported BE, one type

of SRT, and HRT. The rest of this section discusses how to
exploit the timeliness features and properties of the various
types of soft real-time tasks defined by the taxonomy.

3.3 Missed-deadline soft real-time

Missed-deadline soft real-time is the basic non-adaptive
soft real-time used by many of the scheduling frameworks
in the literature [16, 22, 23, 5]. Missed-deadline soft real-
time tasks can miss some or all of their deadlines during
overload. Missed-deadline jobs may complete late or be
dropped, depending upon the application. A missed dead-
line soft real-time task has a target resource rate (Ut), less
than or equal to its worst case resource rate. Since a missed
deadline soft real-time task may miss all of its deadlines, it

2The center of the diagram also include Resource Adaptive Soft Real-
Time with soft deadlines, which combines the characteristics of both
RASRT and MDSRT and has softer requirements than rate-based process-
ing.

3

has a zero minimum resource rate (Um = 0). Missed dead-
line soft real-time tasks include all soft real-time applica-
tions and systems that do not have the ability to adapt their
qualities to the available resources.

3.4 Firm real-time

Firm real-time tasks can miss some, but not all, dead-
lines (min > 0) when resources are limited. In firm real-
time processing, jobs that are going to miss or have missed
their deadline are usually dropped because late results have
little or no value. For example, it is often better to skip a
frame in video playback than to display it late. Firm real
time tasks are considered hard real-time for the purposes of
admission control. Examples of firm-real time applications
include video applications and computer-driven automatic
control and monitoring systems using oversampling tech-
niques [2].
The literature distinguishes two types of firm real-time

processing: statistical firm real-time and pattern-based firm
real-time. A statistical firm real-time task allows a certain
percentage of its jobs to miss their deadlines, but limits the
number of consecutive deadline misses. A (mr, mn)-firm
task allows mr percentage of jobs to miss their deadlines
as long as the number of consecutive deadline misses does
not exceed mn. Pattern-based firm real-time tasks allow to
drop jobs in user or system defined patterns, such as (m,k)-
firm [10] also referred to as weakly-hard real-time [2]. A
(m,k)-firm task requires at least m out of every k of its
jobs to meet their deadlines. A (m,k)-firm constraint is
usually stricter than a (mr, mn)-firm constraint for small
k, e.g. k <= 100. Based on this assumption, (mr, mn)-
firm tasks can be converted to (m,k)-firm with k= " 100·mnmr #
and m= k−mn without loosening constraints. Therefore it
is sufficient to describe firm real time processing as (m,k)-
firm in an integrated system. Firm real-time applications of-
ten have additional constraints for their tasks, for example
some jobs may be more important than others and should
not be dropped (e.g., MPEG I frames).

3.5 Resource adaptive soft real-time

Resource adaptive soft real-time applications adapt their
resource usage and therefore their Quality of Service (QoS)
based on the available resources. For example, a video
stream server may gracefully reduce the video quality in sit-
uations of overload by adjusting the pixel density or frame
rate of the served video stream. In general, applicationsmay
change their sampling interval, frame rate, bit rate, display
size, compression algorithm, or any other algorithmic pa-
rameter affecting resource usage. Resource adaptive soft
real-time tasks can be divided into sub-categories depend-
ing upon whether they adapt continuously or via discrete
QoS levels and whether or not they have a minimum re-
source rate. An example of resource adaptive soft real-time

with discrete QoS levels is adaptive control systems [21],
where a control task is allowed to use different sampling pe-
riods. An example of resource adaptive soft real-time with
continuous QoS levels is a chess program designed to play
in a tournament with a clock: more time will result in a bet-
ter move, but the program will always output a move in the
available time.
Resource adaptive soft real-time tasks have a target re-

source rate Ut , which limits the maximum resource rate
tasks can receive. Whether continuous or discrete, the dif-
ferent algorithms corresponding to the different resource al-
locations are implicitly or explicitly associated with benefit
values [6, 3]; higher values are associated with larger re-
source allocations. For example, for adaptive control sys-
tems, the benefit may be an instantaneous cost function [21]
or a finite-horizon cost function [11] of the control tasks.
We assume that each resource adaptive soft real-time

task has a worst-case resource requirement—which may
change as resource allocations change—so that the task is
always guaranteed to meet all of its deadlines if it adapts to
the available resources. The difference between resource
adaptive and missed deadline soft real-time tasks is that
missed deadline soft real-time tasks miss deadlines when re-
sources are reduced while resource adaptive soft real-time
tasks voluntarily adapt their performance to the available
resources. Hybrids are also possible, where some deadline
misses are allowed but adaptation takes place if too many
occur in a given time window.

3.6 Rate-based

Rate-based tasks have constraints in the form of contin-
uous processing requirements (Um) [25]. A rate-based task
usually has a buffer to hold the produced data temporarily.
This allows rate-based tasks to be very flexible about how
much and when resources are needed. Frequent, small allo-
cations of resources may be used, as may infrequent, large
allocations, or any combination of the two, as long as the
buffer never underflows or overflows. If more space is filled
in the buffer a longer time may elapse before the buffer is
replenished, and if less space is filled, less time may elapse.
Larger buffers (e.g., the amount of RAM in an audio card)
provide more flexibility. A rate-based task with no buffer
capacity degenerates to a hard real-time task.
Any process that uses a buffer or a queue to communi-

cate with another process or a device may be considered
a rate-based task. In an audio player, a rate-based task is
a process that reads audio data frames, decodes and writes
them to a fixed-size memory buffer, and they are consumed
from the buffer by the sound card driver at a constant rate.
Other examples include real-time video recording, such as
burning a VCD/DVD, where a fixed buffer is used to control
the burning process.
The flexibility of rate-based tasks allows them to take ad-

4

vantage of idle time in the system and, in effect, buffer exe-
cution time for other tasks in the system. When the system
is lightly loaded, a rate-based task can temporarily run at a
faster rate and keep the system busy, as long as the buffer
does not overrun. When the system is heavily loaded, a rate-
based task can temporarily run at a slower rate as long as the
buffer does not underrun. In section 4, we discuss different
ways to effectively exploit the flexibility of rate-based tasks
to improve the overall performance of our integrated sys-
tem.

4 Integrating diverse soft real-time schedul-
ing into RBED
RBED is an integrated scheduler supporting hard real-

time, soft real-time and best-effort processes. It allocates
resources to processes as a percentage of CPU such that
the total allocated rate is less than or equal to 100%, and
then schedules all processes with EDF, using timers to en-
force resource allocations. RBED dynamically changes al-
located resources and application periods without violating
EDF constraints, guaranteeing that tasks never miss their
assigned deadlines. Previous implementations of RBED
treated all soft real-time applications as missed-deadline
soft real-time. Below we describe the integration of missed-
deadline soft real-time and the remaining three soft real-
time classes into RBED.
We implemented each soft real-time class in the RBED

scheduler [5] in the Linux 2.6 kernel. For our experiments
we used a 1 GHz Intel Pentium III machine. All real-time
workloads used in the experiments were generated by a tool
we developed for this purpose. As input it takes a period
or minimum inter-arrival time, a worst-case or average-
case execution time, and the desired process type. Based
on these parameters it generates periodic hard real-time or
soft real-time tasks with variable execution times in either
a normal (NW) or a left half-normal (NA) distribution [19].
Since we focus on the performance of real-time applications
in a mixed environment, we arbitrarily reserve a minimum
of 2% of the CPU for best-effort tasks, enough to provide
a functional interactive system for running command shells
during the experiments.

4.1 Missed-deadline soft real-time
We use weighted proportional share to allocate resources

to missed deadline soft real-time tasks in our system. As-
suming the total rate of all hard real-time tasks isUHRT

s , and
the reserved minimum resource rate for all best-effort tasks
is β, the maximum available resource rate for all missed-
deadline soft real-time tasks isUSRT = 1−β−UHRT

s . When
the system is underloaded—the total target rate is less
than the total available rate: ∑N

j=1Ut, j <= USRT , where
N is the number of missed-deadline soft real-time tasks—
a missed-deadline soft real-time task Ti is allocated a re-

source rate Us equal to its target rate: Us = Ut . When the
system is overloaded—∑Nj=1Ut, j > USRT—a proportional
fair share resource allocation policy is used to share re-
sources among missed-deadline soft real-time tasks. That
is, Ti will be allocated a rate proportional to its target rate:
Us =

Ut,i
∑Nj=1Ut, j

×USRT . Each missed-deadline soft real-time
task may have a weight (W) to denote its right to get re-
source share relative to other tasks. In this case, the propor-
tional resource allocation for a missed-deadline soft real-
time task Ti with weight Wi should be adjusted as Us =

Wi×Ut,i
∑Nj=1(Wi×Ut, j)

×USRT . This resource allocation mechanism is
similar to the traditional proportional fair share algorithms,
e.g. WFQ [8] and lottery scheduling [30].
Once resource allocation is done, each missed-deadline

soft real-time task is guaranteed to receive its allocated re-
sources, although its budget and period (Bs,Ps) may dif-
fer from its target ones (e, p). Currently we adjust the re-
ceived budget and period as (Bs = e,Ps = Bs

Us) by extend-
ing the period while keeping the budget. With this ad-
justment, a missed-deadline soft real-time task may fre-
quently miss its deadlines in overload situations. Further-
more, some missed-deadline soft real-time tasks may even
miss deadlines in underloaded conditions because their tar-
get resource rates may not reflect their actual resource rates.
Since a missed-deadline soft real-time task does not have
the functionality to lower its requirement when missing the
current deadline, its current job continues to run until com-
pletion, at which the next job will be released. As a result,
it appears to run “slower” than expected in overload situa-
tions.

4.1.1 Evaluation
We implemented missed-deadline soft real-time processing
in RBED using proportional fair sharing resource alloca-
tion. The default weight of each missed-deadline soft real-
time task is set to 1. A system call is implemented to allow
dynamic changes of task weights.

 0

 5

 10

 15

 20

 25

 30

 50 55 60 65 70 75 80 85 90 95

Re
ce

ive
d u

tili
za

tio
n (

%)

HRT utilization (%)

MDSRT1
MDSRT2

Figure 2. Proportional share among MDSRT
tasks
The first experiment shows the proportional resource

share among multiple missed deadline soft real-time tasks

5

with their weights equal to 1. The workload consists of
one HRT task and two missed-deadline soft real-time tasks
(MDSRT1 and MDSRT2). MDSRT1 and MDSRT2 re-
quest 30% and 20% of CPU respectively and the HRT task
has varying resource utilization ranging from 50% to 95%.
Figure 2 shows the received utilization of the two missed-
deadline soft real-time tasks as the utilization of the HRT
task increases. The utilization of the two missed-deadline
soft real-time tasks decreases exactly proportional to their
requested resource utilization.
The second experiment shows the weight impact on

the relative performance of missed-deadline soft real-time
tasks using proportional fair share. The workload con-
sists of two missed-deadline soft real-time tasks: MDSRT1
(75%, e=75ms, p=100ms) and MDSRT2 (75%, e=150ms,
p=200ms). Figure 3 shows the deadline miss ratio of MD-
SRT1 and MDSRT2 as their relative weight (W2W1) changes.
MDSRT2 achieves better performance—in terms of smaller
deadline miss ratio—by trading off MDSRT1 performance
as the relative weight increases.

 0

 20

 40

 60

 80

 100

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

De
ad

lin
e M

iss
 R

ati
o (

%)

Weight ratio (w2/w1)

MDSRT1 (%)
MDSRT2 (%)

Figure 3. Weight impact on performance
4.2 Firm real-time
Firm real-time tasks are treated as hard real-time for the

purpose of admission control. That is, a firm real-time task
T with target (worst-case) resource rateUt will be allocated
a rate Us = Ut . Therefore, a firm real-time task will not
miss any deadlines if no job is dropped. However, in order
to benefit other soft real-time tasks, actual resource usage of
a firm real-time task may be less than allocated due to job
dropout at runtime.
Drop mode defines the dropout pattern for a firm real-

time task. A drop mode may be static or dynamic. A
static drop mode picks the jobs to drop in a pre-defined
way, such as early dropout (deeply red [18]) and evenly
(uniform dropout [24]), etc. Early dropout always drops
the first m− k jobs and execute the remaining m jobs of a
(m,k)-firm task in each static window of k jobs. For exam-
ple, dropping the 1st, 2nd, 7th, 8th, ..., (6n+1)th, (6n+2)th,
... job of a (4,6)-firm task will not violate its constraint.
Even dropout always drops jobs evenly as long as execution
sequence does not violate (m,k)-firm constraint. For exam-
ple, dropping the 1st, 4th, ..., (3n+1)th, ... job of a (4,6)-firm
task will not violate its constraint.

A static drop mode does not prevent a firm real-time task
from dropping jobs, even if no other tasks require additional
resources. For example, a firm real-time task will continue
to drop its jobs in underloaded states, hurting its own per-
formance without benefitting any other task.
Our dynamic drop mode drops jobs on demand—when

other tasks request additional resources—as long as the
(m,k)-firm constraint is not violated. Dynamic drop mode
captures the load status (under- or over-loaded) and the
highly variable resource requirements of soft real-time (and
best-effort) tasks in the system. By doing so, it ensures that
firm real-time tasks achieve maximum performance when
no other tasks require additional resources. In order to be
able to drop firm real-time jobs dynamically without vio-
lating the (m,k)-firm constraints, a sliding window mecha-
nism [10] needs to be applied. A sliding window mecha-
nism tracking the last k−1 executions allows the system to
determine whether the current job of a firm real-time task
can be dropped without violating the given constraints.

4.2.1 Evaluation
We implemented (m,k)-firm real-time processing [17] in the
RBED scheduler. The experiments show the influence of
static and dynamic dropmodes on performance of other soft
real time tasks in a loaded system. Starting from a static
early drop pattern, always dropping the maximum allowed
number of consecutive jobs, we compare these results with
evenly distributed and drop on demand patterns.
The workload detailed in Table 1 is used to evaluate the

static early drop pattern. It consists of two hard real-time
processes together accounting for 20% of CPU utilization,
a firm real-time process with (m,5) constraints and 28%
of CPU utilization, and one missed-deadline soft real-time
process with 50% of CPU utilization. We measure the influ-
ence of the firm real-time parameter m on the performance
of the missed-deadline soft real-time processes in terms of
deadline misses. Using the same firm real-time parame-
ters, we investigate how the period length of the missed-
deadline soft real-time task influences its deadline misses,
while keeping its utilization constant.
Figure 4 shows the deadline miss ratio of the missed-

deadline soft real-time task as a function of its period. A
set of four curves (FRT-m) shows the missed-deadline soft
real-time performance for the case that m = 5,4,3,2 con-
secutive jobs of the firm real-time task are required to meet
their deadline while the remaining k−m = 5−m ones are
dropped. We consider the first curve (HRT = FRT-5) as
a baseline measure, scheduling our firm real time task as
hard real time without any dropped jobs. This experiment
shows that static firm real-time drop patterns always result
in equal or lower deadline miss ratio for other soft real-time
tasks, compared to firm real-time tasks scheduled as hard
real time. The results also indicate a quantitative relation-

6

ship between firm real-time and other soft real-time tasks:
missed-deadline soft real-time performance improves as the
number of dropped jobs increases from 0 to 3.

Table 1. Workload 1 (unit in ms)
Task Task Parameters Server Parameters Adjustment

e= f (ē) p B= ē P= p U = B
P Δ(ē) Δ(p)

HRT NW(20) 200 20 200 10% 0 0
HRT NW(30) 300 30 300 10% 0 0
FRT (m,5) NW(28) 100 28 100 28% 0 0
MDSRT NA(25) 50 25 50 50% +20 +40

 0

 5

 10

 15

 20

 50 90 130 170 210 250 290 330

De
ad

lin
e M

iss
 R

ati
o (

%)

SRT period (ms)

HRT=FRT-5
FRT-4
FRT-3
FRT-2

Figure 4. Static dropout impact on MDSRT
performance (MDSRT: u= 50%)

Table 2. Workload 2 (unit in ms)
Task Task Parameters Server Parameters Adjustment

e= f (ē) p B= ē P= p U = B
P Δ(ē) Δ(U)

MDSRT NA(10) 100 10 100 8% +2 +2%
FRT(7,10) NW(45) 100 45 100 45% -1 −1%
FRT(7,10) NW(45) 100 45 100 45% -1 −1%

We further investigate the improvements that can be
achieved by dropping firm real-time jobs evenly distributed
and dynamically. Our dynamic dropout mode drops jobs if
there is a demand for resources by other tasks, otherwise
it drops jobs evenly. We compare the performance of all
three dropout modes: early, evenly and on-demand. The
sample workload, detailed in Table 2, consists of two firm
real-time tasks, both having (m,k) = (7,10) firm constraints
and starting at 45% CPU utilization and a missed-deadline
soft real-time task starting at 8% CPU utilization. To inves-
tigate the performance differences between the three firm
real-time dropout modes across varying workloads, we in-
crease the missed-deadline soft real-time task load stepwise
by 2% and reduce the load of each firm real-time task by
1% correspondingly.
Figure 5 shows the deadline miss ratio of the missed-

deadline soft real-time task under the three different drop
modes as its own load increases. Compared to early drop
mode, evenly drop always performs better or equal, while
the dynamic drop mode achieves the best performance.

4.3 Resource adaptive soft real-time
As detailed in section 2, there are many resource adap-

tive soft real-time task models, including imprecise compu-
tation [20], QRAM [26], DQM [3], and [9] , all of which try

 0

 5

 10

 15

 20

 0.1 0.14 0.18 0.22 0.26 0.3

De
ad

lin
e M

iss
 R

ati
o (

%)

SRT Load (fraction of CPU)

EARLY
EVENLY

ON DEMAND

Figure 5. FRT dropout impact on performance

to maximize the global benefit or value that the system can
achieve. It is NP-hard in general to optimize the overall ben-
efit when resource adaptive applications with discrete QoS
levels coexist in the system [20, 3], so heuristics are used
to achieve high overall utility by dynamically adjusting the
QoS levels of each soft real-time task given the available
resources in the system. Our heuristic algorithm iteratively
increases the level of a task which will provide the great-
est increase in benefit density [14, 3], i.e., the one with the
greatest Δbene f itΔrate , until no more increases are possible within
the available resources. Similarly, when lowering resources
it always chooses the level whose removal decreases over-
all benefit density the least. Although the heuristic algo-
rithm frequently finds the resource allocation that provides
the highest possible benefit, this is not always guaranteed,
nor is it always possible.

4.3.1 Evaluation
We implemented the resource adaptive soft real-time pro-
cessing using heuristic resource allocation in RBED. A sys-
tem call is implemented to allow the application to adjust
its benefit (similar to the weight adjustment in missed dead-
line soft real-time processing) and query any resource ad-
justment done by the scheduler in the kernel. We expect
a better resource adjustment communication mechanism by
using signal notification in the future. The resource adaptive
processing model and its implementation in RBED were
validated with a real case study applied to adaptive control
systems [21]. Here we present some basic experiments that
demonstrate how the heuristic algorithm works.
The experiment shows the resource adaptation results as

the offeredworkload changes. The workload consists of one
HRT task with CPU utilization of 60%, and three resource
adaptive soft real-time tasks (RASRT-1, RASRT-2, RASRT-
3) with discrete QoS levels shown in Table 3. Figure 6
shows the changes of the QoS levels of RASRT-1. RASRT-
2 and RASRT-3 as the HRT task enters and leaves the sys-
tem. Initially, the HRT task uses 60% of the resource, and
executes for 46.2 seconds. Therefore the maximum avail-
able resource rate for the resource adaptive soft real-time

7

Table 3. Benefit Tables (RASRT-1, RASRT-2 and RASRT-3 in Figure 6)
Number of QoS Levels: 4
Level Benefit Rate Period
1 1.0 0.35 100 ms
2 0.7 0.30 100 ms
3 0.5 0.20 100 ms
4 0.3 0.10 100 ms

Number of QoS Levels: 4
Level Benefit Rate Period
1 1.0 0.45 100 ms
2 0.8 0.40 100 ms
3 0.6 0.30 100 ms
4 0.4 0.10 100 ms

Number of QoS Levels: 4
Level Benefit Rate Period
1 1.0 0.60 100 ms
2 0.9 0.50 100 ms
3 0.7 0.40 100 ms
4 0.5 0.10 100 ms

(a) RASRT-1 (b) RASRT-2 (c) RASRT-3

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70 80

Cu
mu

lat
ive

 C
PU

 Ti
me

 (s
)

Time (s)

HRT
RASRT-1
RASRT-2
RASRT-3

Figure 6. RASRT behavior in RBED

tasks is 100%−60%−2%= 38% (Note that we reserve 2%
for all best-effort tasks in the system). As a result, the re-
source adaptive soft real-time tasks each receives 10%, their
lowest QoS levels. When the HRT task leaves, the levels of
RASRT-1, RASRT-2 and RASRT-3 are adjusted to provide
a higher level of benefit within the available resources. The
result is that RASRT-1 increases to level 1, RASRT-2 in-
creases to level 1, and RASRT-3 remains at level 4, shown
as the bold rows in Table 3.

4.4 Rate-based

Our integrated system currently treats rate-based tasks as
hard real-time tasks when allocating resources and assigns
Us = Ut . There are three approaches to scheduling rate-
based tasks: as periodic hard real-time, as a continuously
releasable hard real-time, and as a continuously releasable
hard real-time with blocking.

4.4.1 Rate-based as periodic hard real-time
In the first approach, rate-based tasks are scheduled as peri-
odic hard real-time tasks. For both producer and consumer
processes, we choose a block size of n bytes which is no
greater than half of the buffer and no smaller than the mini-
mum amount of data that can be requested by the consumer.
For a producer process, the budgetBs is set to the worst-case
time to produce n bytes and the period Ps is set to the time
to consume n bytes. When each period ends, the previously
produced n bytes are consumed, but the scheduler guaran-
tees that next n bytes are produced by this time. The situa-
tion is reversed for consumer processes (those on the other
side of the buffer). Thus, the algorithm guarantees there will
be no buffer underrun provided that n exceeds the lowest re-

quired block size. To prevent buffer overrun, the maximum
value of n is the half size of the buffer, because we need
2 ∗ n bytes of unused space in the buffer to pre-fill it with n
bytes and then produce another n bytes in the first period.
The algorithm allows any choice of budget Bs ∈ [emin,emax]
and thus the corresponding period Ps ∈ [eminUs , emaxUs], where
emin is the worst-case execution time (WCET) needed by
the task to produce the minimum amount of data requested
by its consumer, and emax is the WCET needed by the task
to produce the amount of data that exactly fills half of the
buffer.
The performance of rate-based processes is guaranteed

by worst-case resource reservations, but overconstrains the
processing, fails to take advantage of the flexibility inherent
in rate-based processes, thereby limiting its ability to both
produce and consume slack, and ultimately limits the over-
all performance of the system, as will be discussed below.

4.4.2 Rate-based as continuously releasable hard real-
time

In this approach, a rate-based task T immediately releases
its next job (if there is one) once it completes the current
job, and the time needed to empty the buffer is assigned
as the new deadline. If the buffer is full, the task will be
blocked until some of the data in the buffer is consumed.
In particular, the budget and period of T are assigned the
minimum values: (Bs,Ps) = (emin, BsUs). Once T completes
a current job, its new job is released immediately with
the deadline assigned its previous deadline plus the period:
ds, j = ds, j−1+Ps.
Similar deadline extension mechanisms are used in other

systems [1, 19] to allow the current job to borrow from the
budget reserved for the task’s next job. Since the borrowed
resources are executed with the deadline of the following
job, the task’s utilization remains unchanged and therefore
the correctness of the scheduling is preserved.
With the deadline extension mechanism, a rate-based

task automatically takes advantage of any available slack
(allocated but unused resources) in the system to complete
as many jobs as possible, and idles when the buffer is full,
producing slack for other processes. Therefore, we expect
this approach to be more efficient than the first one. How-
ever, this approach still fails to achieve the full potential of
rate-based processes.

8

4.4.3 Rate-based as continuously releasable hard real-
time with blocking

This approach extends the previous approach by also con-
sidering demands of other tasks in the system. If there are
other tasks that need additional resources, a rate-based task
T will block immediately until some minimum amount of
data in the buffer is consumed or a minimum level of the
buffer is reached. This sheds the total load and gives other
tasks a better opportunity to use idle time in the system.
Since this approach takes the dynamic resource usage into
consideration and sheds load by blocking rate-based tasks if
necessary, we expect better responsiveness of aperiodic soft
real-time or interactive I/O bound best-effort processes.

4.4.4 Evaluation
We have implemented the three approaches for scheduling
rate-based tasks in RBED and present experimental results
of their relative performance. The workload, detailed in
Table 4, consists of one HRT task with CPU utilization of
20%, one rate-based task (RB) with CPU utilization of 50%
and the buffer size of 8 ∗ n, where n is the amount of data
generated by each completed job, and one missed-deadline
soft real-time task (MDSRT) with CPU utilization of 30%.
We compare the performance of the missed deadline soft
real-time task in the presence of the rate-based task sched-
uled respectively as a hard real-time task with period of
50ms, a continuously releasable hard real-time task (RB
w/o block), and a continuously releasable hard real-time
task with blocking (RB with block). We also varied the pe-
riod of the missed deadline soft real-time task by changing
its execution time while keeping its demanding utilization
constant.

Table 4. Workload 3 (unit in ms)
Task Task Parameters Server Parameters Adjustment

e= f (ē) p B= ē P= p U = B
P Δ(ē) Δ(p)

MDSRT NA(60) 200 60 200 30% +3 +10
RB NW(25) 50 25 50 50% 0 0
HRT NW(160) 800 160 800 20% 0 0

 0

 10

 20

 30

 40

 50

 60

 240 260 280 300 320 340 360 380 400

De
ad

lin
e M

iss
 R

ati
o (

%)

SRT period (ms)

HRT
RB (w/o block)

RB (w block)

Figure 7. Rate-based scheduling behavior im-
pact on performance

Figure 7 shows the deadline miss ratio of the missed

deadline soft real-time task as its period increases under
the three different approaches. The results show that the
approach of scheduling rate-based tasks as continuously re-
leasable hard real-time tasks with blocking outperforms the
approach of scheduling rate-based tasks as a continuous re-
leasable hard real-time tasks without blocking; Both out-
perform the approach of scheduling rate-based tasks as pe-
riodic hard real-ime tasks in all scenarios.

5 Conclusions and Future Work

The spectrum of real-time applications with different
time and resource constraints requires a classification to op-
timally support each of them. In order to optimize system
performance in an integrated real-time system, it is nec-
essary to manage all classes of real-time applications to-
gether with best-effort applications, uniformly using a sin-
gle scheduler. Based on the RADmodel, we have developed
a real-time taxonomywhich captures the timeliness features
of existing real-time applications. This is the first complete
taxonomy that fully captures the range of real-time process-
ing requirements from best-effort to hard real-time. Since
best effort and hard real time processing have been exten-
sively investigated in the past, we focused on the wide spec-
trum of soft real time classes, namely missed-deadline soft
real-time, resource adaptive soft real-time, firm real-time
and rate-based. Exploiting the timeliness features of each
of these classes allowed us to describe the complete space
of real-time processing and to integrate them into our RBED
scheduler.
The promising performance results suggest an obvious

next step, which is to develop a uniform resource alloca-
tion model to uniformly manage all classes of processes.
Looking at the individual ways each soft real-time class is
currently handled, it becomes obvious that not all process-
ing mechanisms are fully compatible in a uniform system.
For example, missed-deadline soft real-time tasks seek fair-
ness through proportional share resource allocation, while
resource-adaptive soft real-time tasks use a heuristic re-
source adaptation algorithm to achieve the highest possi-
ble global benefit. Assigning a benefit value to missed-
deadline soft real-time tasks or giving up the benefit value
for resource-adaptive soft real-time tasks makes satisfying
their individual goals impossible. On the other hand, firm
real-time and rate based tasks are both handled like hard
real-time with the exception of allowing for certain missed
deadlines or trade offs between resource allocation and dis-
patching constraints respectively.
Unifying these different processing mechanisms can be

described in two ways. First, reduce the number of classes
by either relaxing the requirements of more constrained
classes, e.g. firm real-time such that it becomes missed-
deadline soft real-time, or by increasing the requirements of
less constrained classes, e.g. missed-deadline soft real-time

9

such that it becomes firm real-time. This approach, used by
most existing schedulers, may result in reducing the number
of classes into only one single class, which is not a flexible
solution as explained in section 1. Second, merge the pro-
cessing mechanisms of several different classes by simpli-
fying their existing timeliness features or introducing new
timeliness features. This approach will maintain the diver-
sity of classes but unify the processing mechanisms for as
many classes as possible. We favor the second approach and
are currently investigating its implementation in the RBED
scheduler.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. In Proceedings of the 19th
IEEE Real-Time Systems Symposium (RTSS 1998), pages 4–
13, Dec. 1998.

[2] G. Bernat, A. Burns, and A. Llamosı́. Weakly hard real-time
systems. IEEE Transactions on Computers, 50(4):308–321,
Apr. 2001.

[3] S. Brandt and G. Nutt. Flexible soft real-time processing in
middleware. Real-Time Systems, 22:77–118, 2002.

[4] S. Brandt, G. Nutt, T. Berk, and J. Mankovichr. A dy-
namic quality of service middleware agent for mediating ap-
plication resource usage. In Proceedings of the 19th IEEE
Real-Time Systems Symposium (RTSS 1998), pages 307–
317, Dec. 1998.

[5] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dy-
namic integrated scheduling of hard real-time, soft real-time
and non-real-time processes. In Proceedings of the 24th
IEEE Real-Time Systems Symposium (RTSS 2003), pages
396–407, Dec. 2003.

[6] A. Burns. Scheduling hard real-time systems: A review.
Software Engineering Journal, 6:116–128, May 1991.

[7] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elas-
tic scheduling for flexible workload management. IEEE
Transactions on Computers, 51(3):289–302, Mar. 2002.

[8] A. Demers, S. Keshav, and S. Shenker. Analysis and sim-
ulation of a fair queueing algorithm. In Proceedings of the
ACM SIGCOMM Symposium, pages 1–12, Sept. 1989.

[9] C. Hamann, J. Löser, L. Reuther, S. Schönberg, J. Wolter,
and H. Härtig. Quality assuring scheduling-deploying
stochastic behavior to improve resource utilization. In Pro-
ceedings of the 22nd IEEE Real-Time Systems Symposium
(RTSS 2001), Dec. 2001.

[10] M. Hamdaoui and P. Ramanathan. A dynamic priority as-
signment technique for streams with (m,k)-firm deadlines.
IEEE Transactions on Computers, 44(12):1443–1451, Apr.
1995.

[11] D. Henriksson and A. Cervin. Optimal on-line sampling pe-
riod assignment for real-time control tasks based on plant
state information. In In Proceedings of the 44th IEEE
Conference on Decision and Control and European Control
Conference (CDC-ECC 2005), Dec. 2005.

[12] K. Jeffay and D. Bennett. A rate-based execution abstrac-
tion for multimedia computing. In Proceedings of the Fifth
International Workshop on Network and Operating System
Support for Digital Audio and Video, Apr. 1995.

[13] K. Jeffay and S. Goddard. A theory of rate-based execution.
In Proceedings of the 20th IEEE Real-Time Systems Sympo-
sium (RTSS 1999), pages 304–314, Dec. 1999.

[14] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven
scheduling model for real-time operating systems. In Pro-
ceedings of the 6th IEEE Real-Time Systems Symposium
(RTSS 1985), Dec. 1985.

[15] M. B. Jones, J. S. B. III, A. Forin, P. J. Leach, D. Roşu,
and M.-C. Roşu. An overview of the Rialto real-time archi-
tecture. In Proceedings of the 7th ACM SIGOPS European
Workshop, pages 249–256, Sept. 1996.

[16] M. B. Jones, D. Roşu, and M.-C. Roşu. CPU reservations
and time constraints: Efficient, predictable scheduling of in-
dependent activities. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP ’97), pages
198–211, Oct. 1997.

[17] T. Kaldewey, C. Lin, and S. A. Brandt. Firm real-time
processing in an integrated real-time system. In Work in
Progress Session of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, San Jose, Califor-
nia, 2006.

[18] G. Koren and D. Shasha. Skip-over: Algorithms and com-
plexity for overloaded systems that allow skips. In Proceed-
ings of the 16th IEEE Real-Time Systems Symposium (RTSS
1995), Dec. 1995.

[19] C. Lin and S. A. Brandt. Improving soft real-time perfor-
mance through better slack reclaiming. In Proceedings of
the 26th IEEE Real-Time Systems Symposium (RTSS 2005),
pages 3–14, Miami, Florida, Dec. 2005.

[20] J. W. Liu, K. Lin, W. Shih, A. C. Yu, J. Chung, and W. Zhao.
Algorithms for scheduling imprecise computations. IEEE
Computer, 25(5):58–68, May 1991.

[21] P. Martı́, C. Lin, S. A. Brandt, M. Velasco, and J. M.
Fuertes. Optimal state feedback based resource allocation
for resource-constrained control tasks. In Proceedings of
the 25th IEEE Real-Time Systems Symposium (RTSS 2004),
pages 161–172, Dec. 2004.

[22] C. W. Mercer, S. Savage, and H. Tokuda. Processor capac-
ity reserves: Operating system support for multimedia ap-
plications. In Proceedings of the 1994 IEEE International
Conference on Multimedia Computing and Systems (ICMCS
’94), pages 90–99, May 1994.

[23] J. Nieh and M. Lam. The design, implementation and eval-
uation of SMART: A scheduler for multimedia applications.
In Proceedings of the 16th ACM Symposium on Operating
Systems Principles (SOSP ’97), Oct. 1997.

[24] L. Niu and G. Quan. A hybrid static/dynamic dvs schedul-
ing for real-time systems with (m,k)-guarantee. In Proceed-
ings of the 26th IEEE Real-Time Systems Symposium (RTSS
2005), pages 356–365, Miami, Florida, Dec. 2005.

[25] A. Povzner, C. Lin, and S. A. Brandt. Supporting rate-based
processes in an integrated system. InWork in Progress Ses-
sion of the 12th IEEE Real-Time and Embedded Technology
and Applications Symposium, San Jose, California, 2006.

[26] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A re-
source allocation model for QoS management. In Proceed-
ings of the 18th IEEE Real-Time Systems Symposium (RTSS
1997), Dec. 1997.

[27] J. Regehr. Using Hierarchical Scheduling to Support Soft
Real-Time Applications on General-Purpose Operating Sys-
tems. PhD thesis, University of Virginia, May 2001.

[28] J. Regehr and J. A. Stankovic. HLS: A framework for com-
posing soft real-time schedulers. In Proceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS 2001), pages 3–
14, London, UK, Dec. 2001. IEEE.

[29] H. Tokuda and T. Kitayama. Dynamic QoS control based
on real-time threads. In Proceedings of the Fourth Interna-
tional Workshop on Network and Operating System Support
for Digital Audio and Video, pages 114–123, 1993.

[30] C. A. Waldspurger and W. E. Weihl. Lottery scheduling:
Flexible proportional-share resource management. In Pro-
ceedings of the First Symposium on Operating Systems De-
sign and Implementation (OSDI’94), Nov. 1994.

10

